If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5w^2+81w=0
a = -5; b = 81; c = 0;
Δ = b2-4ac
Δ = 812-4·(-5)·0
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(81)-81}{2*-5}=\frac{-162}{-10} =16+1/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(81)+81}{2*-5}=\frac{0}{-10} =0 $
| 9(x-1)+8=3x+6(-1+x) | | 5x^+8x-3=0 | | 19.50+.25m=44 | | -v/4=-8/1=32 | | 4y-y/2-(-4)=6 | | x/2,3=-18 | | 21-1/21(3x)=14-1/24(2x) | | W/15=45;w=670 | | 42=4x=3x | | 7x+7+9x+54=x | | X-9.6=32.7;x=42.3 | | x+5/2=50 | | 3x/3=3/9 | | 15x-14x=16 | | 21-(1/21)(3x)=14-(1/24)(2x) | | -9y-6=-8y-7 | | -7/2=y-10 | | 7(c+2)=1+6c | | 7y+3y=9y+4 | | -105=-5(3+3r) | | 13.4+k=64.1;k=28.7 | | 1/2(6c+4)-2c+5/2)=2/3(9-3c) | | 8(x=2)=2x+16 | | 6(d+2)-4+d=3(d-3) | | 31+2x=x^2 | | 7b+2b=-9 | | x/7=280 | | -3x=x-)6-2x) | | ((2x)/3)-(4/3)=(24/5) | | 11-(t+-7)=0 | | 7x-28x-9=7(5x-9) | | 1,8x=42,6 |